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Diffusion enhancement in a periodic potential under high-frequency space-dependent forcing
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We study the long-time behavior of an underdamped Brownian particle moving through a viscous medium
and in a systematic potential, when it is subjected to a space-dependent high-frequency periodic force. When
the frequency is very large, much larger than all other relevant system-frequencies, there is a Kapitsa time
window wherein the effect of frequency-dependent forcing can be replaced by a static effective potential. Our
analysis includes the case in which the forcing, in addition to being frequency-dependent, is space-dependent
as well. The results of our analysis then lead to additional contributions to the effective potential. These are
applied to the numerical calculation of the diffusion coefficient (D) for a Brownian particle moving in a
periodic potential. Presented are numerical results, which are in excellent agreement with theoretical predic-
tions and which indicate a significant enhancement of D due to the space-dependent forcing terms. In addition,
we study the transport property (current) of an underdamped Brownian particle in a ratchet potential.
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I. INTRODUCTION

Brownian motion in periodic structures has various appli-
cations to condensed matter physics, nanotechnology, and
molecular biology [1-3]. Adding noise to deterministic non-
linear dynamics leads to interesting and important phenom-
ena, such as stochastic resonance [4], Brownian motors and
chaotic ratchet transport [5], resonant activation [6], noise-
induced phase transition [7,8], etc. Thermal diffusion of a
Brownian particle, which we will discuss here, is of great
interest in numerous other contexts, namely Josephson junc-
tion [9], rotating dipoles in external fields [10], superionic
conductors [11], synchronization phenomena [12], diffusion
on crystal surfaces [13], particle separation by electrophore-
sis [14], and biophysical processes such as intracellular
transport [1].

In this paper, we focus on the underdamped motion of a
Brownian particle that feels viscous forces and random im-
pulses from the surrounding medium and is confined by a
potential well. Our primary interest is to study the effect of
an externally applied position-dependent driving force that is
periodic in time. The frequency is much larger than all other
relevant frequencies of the system. Hence we can apply the
usual Kapitsa analysis for high-frequency oscillating fields
[15]. It has earlier been shown that on time scales larger than
the period of perturbation, the dynamics is equivalent to one
in which the periodic perturbation can be replaced by a time-
independent effective potential [16,17]. Reference [17] treats
the overdamped Brownian motion, whereas we deal with un-
derdamped motion of the Brownian particle. Dutta et al. [16]
have based their analysis on the Fokker-Planck equation ap-
proach. Here we provide an alternative derivation of the
main results through the Langevin dynamics, which is more
straightforward.

Further, we extend Kapitsa’s analysis by using the addi-
tional contributions to the effective potential arising from the
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space-dependent periodic force for the calculation of the
thermal diffusion coefficient [18,19]. One remarkable feature
of our present paper is that the effective diffusion coefficient
of an underdamped Brownian particle in a periodic potential
in the presence of an externally applied space-dependent os-
cillating force is larger than that in the absence of the exter-
nal force by about 12 orders of magnitude. With respect to
the bare thermal diffusion coefficient, this enhancement is by
about four orders of magnitude. In addition, certain features
of the ratchet mechanism [20] are relevant in this context in
terms of transport properties (currents).

With the preceding background, the paper is organized as
follows. In Sec. II we introduce the model, the numerical
scheme, and the basic quantities of interest, namely the ef-
fective potential, the effective diffusion coefficient, and the
average particle current. In Sec. III we develop the necessary
formalism to address rapidly periodic drive and arrive at the
perturbative effective potential. In Sec. IV we discuss the
numerical results on the effective diffusion coefficient and
average particle current. The summary remarks, discussion,
and conclusion of our findings are presented in Sec. V.

II. MODEL

The stated Brownian dynamics is governed by the Lange-
vin equation

mit = — yi— LU0 + Fet) + (1), (1)
Jx

where m is the mass of the Brownian particle, 7y is the fric-
tion coefficient, U(x) is the confining potential, F(x,7) is the
periodic driving force with a period 7, and F(x,f)=F(x,¢
+7). Thermal fluctuations are modeled by the zero mean
S-correlated white noise 7(z), i.e., (5(t))=0 and {7(z) n(z'))
=2yB'8(t—t"), where B=(kgT)~!, kp being the Boltzmann
constant and T is the temperature. Our goal is to show that,
on time scales larger than 7, the dynamics can be mapped
onto a modified Langevin dynamics in which the periodic
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forcing is absent but the potential U(x) can be replaced by a
suitable effective potential U.g(x). The methodology we fol-
low is based on Kapitsa’s treatment for high-frequency os-
cillating fields in parametric oscillations [21]. We derive the
form of the effective potential up to second order in & (ex-
pansion parameter which is related to the inverse of the
square of the oscillating frequency) in Sec. IIL.

We also study the transport properties and diffusion coef-
ficient for ratchetlike systems. The corresponding Langevin
dynamics is governed by the equation

mx + yx=—=V'(x) + A(x)cos(Qr) + \2ykzTn(r), (2)

where V(x) is a periodic potential with period L, i.e., V(x)
=V(x+L), and the prime denotes the first derivative of V(x)
with respect to x. In our case, V(x)=-V[sin(x)—u sin(2x)]
with Vy=1 and u= throughout this work. We define the
above dynamics as the original dynamics. Following Kapit-
sa’s treatment, we derive in the sequel an effective potential
for which the dynamics is governed by the equation

mx+ yx=-— éff(x) +\2vkpT (1), (3)

where V. is derived in Sec. III below. The first basic quan-
tity of interest in the transport process is the average particle
current defined as

() = lim <x(;)> )

11—

The other quantity of important interest is the effective dif-
fusion coefficient, which is defined as

1 (@) = (x(0))
eff = 11 s

t—® 2t

©)

where the two brackets, respectively, denote averages over
the initial conditions of position and velocity and over all
realizations of thermal noise. Exact analytical results for D
are known for two special cases. First, in the absence of the
periodic potential we have the famous Einstein’s relation D
=%. Second is the case in which the periodic potential is
present but the external field A(x)cos({)¢) is absent, wherein
D is obtained as [22,23]

f dx Vg T]J _e[ V(\)/kBT]

Numerically, we calculate this diffusion coefficient for our

(6)

periodic potential and it is seen that D<D as expected.
Calculation of the diffusion coefficient in the presence of
both externally applied space-dependent periodic force and
arbitrary periodic potential is not analytically possible.
Hence we solve Egs. (2) and (3) numerically, but by first
converting them into dimensionless forms. In doing this, we
recognize that the characterlstlc time scale 7, that governs
the Newtonian dynamics— mﬁ: V'(x)—is given by 72
—ﬁ . Therefore, we rescale x by dividing by L and rescale ¢

by d1v1d1ng by 7, to obtain
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K+ bi==V'(x) +a(x)cos(wt) + \2bDy 7, (7)
X+ bi == V/(x) +\2bDy 7, (8)

where Eq. (7) denotes original dynamics, whereas Eq. (8) is

for effective dynamics. The various dimens10nless quantities

appearing above are given by p=22 V(x)—TO, a= Q,L, 1)

m’

kgT N
=Q, Dy=",. and 7(1)=\1y7(1).

II1. EFFECTIVE POTENTIAL

As mentioned earlier, our focus is on the result that on
time scales larger than the period of perturbation, the dynam-
ics is equivalent to one in which the time-dependent periodic
perturbation can be replaced by a time-independent effective
potential [17,21]. In Sarkar and Dattagupta [17], it has been
shown in great detail that the expression of the effective
potential does not alter in the presence of noise. We presume
and verify that this result is true even when the forcing term
is space-dependent. Further, unlike [17] we treat the under-
damped case from which all the results of [17] can be ob-
tained as a limit.

A. First-order correction

It is evident from the nature of the field in which the
particle moves that it will traverse a smooth path and at the
same time will execute small noisy fluctuations about that
path. Accordingly, we represent the function x(¢) as a sum,

x(1) =X(1) + &), )

where X(7) is a slow variable and &(X,r) is a fast variable.
The following transformations then follow:

x=X+&X,1),
i=X+ E(X,t),

d |

ax 1+§'5('

(10)

Now setting the noise term to zero and putting the above
transformations in Eq. (1), we obtain

m[X(1) + EX,0)]= - AX(1) + EX,0)]+ F(X + &1)

1+§5(U( +4). (11)

To find the effective potential experienced by the particle
correct to first order, we perform a Taylor series expansion of
Eq. (11) up to first order. Thus,

1
—ga[U( )

+&U'(X)]+ F(X,1) + éF' (X,1). (12)

mX (1) + m&(X,1) = — yX(t) — y&(X,1) -

Equation (12) involves both “fluctuating” and “smooth”
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terms on the left and right sides, which must be separately
equal. For the fluctuating terms, we can simply put

mé(D) + y&(t) = F(X.1), (13)

where we take [16] F(X,1)=f(X)cos(wt)+g(X)sin(wt). Solv-
ing Eq. (13), we obtain

E(X.1) = ;f[ (f(X) + lgoo)cos(wr)
m<w2 + )

Y mw
)
Y .
+ (g(X) - —f(X))sm(wt)] . (14)
mw
Since w is large, L~ (1-¢") is effective. Next combining

1+&'
Eq. (13) with Eq. (15) and then averaging over a time period,
we finally obtain

mX(t) + yX(t) =— w +({&F' (X,1)), (15)
X
where
e L P 2
(EF'(X,1)) = 4m<w2+ ﬁ) va[f (X) +g*(X)]
m2

+ 221 (0g(x) - g’(X)f(X)]} . )

With the help of Eq. (16) we can rewrite Eq. (15) as follows:

. ) {%Lﬁm

dU(X) 1
4 2+ £
(o

X

mX(1) + yX(t) = —

+ 2001+ 2217 (X)300 - g’(X)f(X)]} ,
(1)
or

d Ueff(X )

mX (1) + yX(t) = — X

: (18)

with U.(X)=U(X)+U'(X), where

U'(x) = ;yz){i[fz(?() +8200]

4m<w2+ - X
2
m

X
+%f dy[f’(y)g(y)—g’(y)f(y))]. (19)

It is clear that U'(X) vanishes for space-independent forcing,
as in [17].

B. Second-order correction

To find the second-order correction term in the effective
potential, the transformation equations given in Eq. (10)
have to be modified as
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x=X+&X,0)+ &X,0NE (X,1),
X=X+ &+ €8+ E,
F=X+E+ 88 + &8 +288,

9 _ ! 9
ax 1+&+ &2+ &8 0X

(20)

Putting the above transformation in Eq. (1) and retaining
terms up to second order in &€ [O(£2)], we derive

m(X + &+ EE + £ +2&€)
=YX+ E+EE+EE)-(1-¢ -2 - EE")

X|U'(X)+ U"(X)é+ U'(X)& + U"(X)EE + U'(X)&"?
+ U (X)&E" + %U"’(X)g2 +U"(X)EE | + F(X,1)
+EF (X,1) + EEF (X, 1) + %sz”(X,t).

Next, after performing time averaging, we ultimately obtain

. . 1
mX +yX=-U'(X)+ U (X)(¢'?) - 5%{U"(X)<§2>]

+(§F' (X.1))=- X

21

with Ug(X)=U(X)+U"(X)+U?*(X), where U(X) is the sys-
tematic periodic potential, U'(X) is the first-order correction
to the effective potential given by Eq. (19), and the second-
order correction to the effective potential is given by

UA(X) = 7 ) [[F(X) +g*(X)]U"(X)

4m2w2<w2 + %
X
-8 f dy[f”*(y) + g’z(y)]} : (22)

The results for U'(X) and U*(X) are identical to those ob-
tained by Dutta and Barma [16], who have, however, em-
ployed a Fokker-Planck equation approach.

With the help of Eq. (19) and Eq. (22), we calculate the
first-order and second-order correction terms for the periodic
potential V(x) and ultimately obtain the effective potential
V() =V(x)+ V!(x)+ V*(x), which are given by, for the
space-independent case,
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FIG. 1. (Color online) The periodic potential V(x).
a2
Vegr(x) =| ————F————=+ — 1 |sin(x) + w sin(2x)
4dm ( >+ —)
)

a2

X -1 (23)

‘f k
il ?)
m

and for the space-dependent case,
2.2
a’x

Veff(-x) =

4m2w2 w +—

+u sm(2x) -1
2)

+

72> — 1 |sin(x)

( 2 72> 2 mw2>’ 24)
m\| w _2
where F(x,f)=a cos(wt) and axcos(wr) for the space-
independent and space-dependent cases, respectively.

In Fig. 1, we plot the periodic systematic ratchet potential
V(x)=—sin(x)— u sin(2x) with u=7

In Figs. 2 and 3, we plot the effective potential for the
space-independent and space-dependent external force, re-
spectively. In the next section, we further extend this analysis
by using these results for calculating the effective diffusion
enhancement and transport current.

T
a=3.0 6 a=6.0 .

| | |
g10 -5 0 5 10 -10 -5 0 5 10
X

FIG. 2. (Color online) The effective potential V.(x) when ex-
ternal force is space-independent.
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FIG. 3. (Color online) The effective potential V.g(x) when ex-
ternal force is space-dependent.

IV. NUMERICAL SCHEME AND RESULTS

We numerically solve Egs. (7) and (8) with the aid of the
Heun scheme, which is basically the Runge-Kutta algorithm.
Our main interest, as emphasized earlier, is to compute the
effective diffusion coefficient, which we do using Eq. (5).
We calculate this quantity for the original dynamics and ef-
fective dynamics for the two special cases: (a) space-
dependent external periodic force and (b) constant amplitude
external periodic force. We have taken up to a second-order
correction term in solving the effective dynamics. There are
four dimensionless parameters a, b,D,, and o (defined ear-
lier in terms of physical quantities), and to define the effec-
tive potential we need to specify three more parameters m, 7,
and p. We fix 5=0.1, 0=5.0, m=1.0, y=0.1, ©=0.25, and
Dy=0.025 throughout this work and vary the parameter a. In
Fig. 4, we have plotted the effective diffusion coefficient
versus external force field strength (a) for both the space-
dependent and space-independent cases.

In both cases, the enhancement of the effective diffusion
coefficient as a function of the amplitude « is clearly notice-
able. In the absence of the external force, D=2.34 X 10~10
[calculated using Eq. (6)], and it agrees very well with the
Heun scheme results when a=0. From Fig. 4, it is evident
that the effective diffusion coefficient in a periodic potential
in the presence of an externally applied oscillating force can
be larger than in the absence of the external force by about

300 —— @ ————
Or1g1nal
Dynamics Oviginal
Effective, Dynamics
Dypnmoss Effective
200+ 4 0L Dynamics |
Deff Deff
100+ 4 20k
@ (b)
0 L | | 0 | | | |
0 2 446 8 0 2 44a6 310

FIG. 4. (Color online) The effective diffusion coefficient for
original and effective dynamics for two cases: (a) space-dependent
and (b) space-independent external periodic force. The parameters
that we use for this numerical calculation are b=0.1, w=5.0, D,
=0.025, m=1.0, and y=0.1.
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FIG. 5. (Color online) The current J of the inertial rocked
Brownian motor when external force is space-dependent. The pa-
rameters that we use for this numerical calculation are »=0.1, w
=5.0, D4=0.025, m=1.0, and y=0.1.

12 orders of magnitude, for certain values of a. This en-
hancement is, however, about four orders of magnitude
higher than the free diffusion coefficient (D). The enhance-
ment is more pronounced for the space-dependent external
periodic force than the constant amplitude external periodic
force due to the extra terms in the effective potential for the
space dependence of the external force.

It is known that there are two states of a driven Brownian
dynamical system: the locked state, in which the particle
stays inside one potential well, and the running state, for
which the particle runs over the potential barriers. The first
regime is characteristic of a small driving force strength.
When the amplitude of the external field is made large, a
running state appears where we can see both diffusive and
regular behavior of the particle. The most interesting feature
in Fig. 4 is the resonancelike behavior of the diffusion coef-
ficient. This leads to the existence of an optimal a for the
enhancement of the diffusion rate. This phenomenon is remi-
niscent of stochastic resonance (SR) [24-26]. So we can
hereby employ the acronym “SR” to imply acceleration of
diffusion. By this we mean that a new diffusion mechanism,
with combined action of noise, spatially periodic potential,
and time-periodic modulation, can be more effective than
that of free Brownian motion, since D, is shown to exceed
unity in a large region around some optimal parameter re-
gions. In these regions, the optimal matching of the periodic
force and noise drives the particles up the potential hills dur-
ing each time period. Then these particles scatter at the po-
tential barriers and finally they diffuse very quickly into wide
regions. Therefore, in order to get the above-mentioned dif-
fusion enhancement, we need the optimal collective actions
of three forces—spatially periodic force, time periodic
modulation, and stochastic stimulation. Further, we should
emphasize that the extra terms in the effective potentials due
to space dependence of the external force do indeed aid this
diffusion enhancement mechanism.

We have also studied the current J, which is defined as the
time average of the average velocity over an ensemble of
initial conditions. Thus it involves two different averages.
The first is over M initial conditions, which we take ran-
domly centered around the origin and with an initial velocity

PHYSICAL REVIEW E 73, 051108 (2006)
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FIG. 6. (Color online) The current J of the inertial rocked
Brownian motor when external force is space-independent. The pa-
rameters that we use for this numerical calculation are b=0.1, w
=5.0, Dy=0.025, m=1.0, and y=0.1.

equal to zero. For fixed time 7; we calculate the average
velocity v;= ,LWEZIJ&,»(Q). The second average is over time and
yields J= #Zfilv ;- All quantities of interest are averaged over
250 different trajectories and 10* periods. In solving effec-
tive dynamics we have used up to a second-order correction
term of the effective potential for both space-dependent and
space-independent cases. In Fig. 5, we have shown the be-
havior of the transport currents in the case of space-
dependent external force. Initially the current is zero, follow-
ing which it increases and peaks at some optimal values of a,
then decreases with the increase of a. The following expla-
nation will help to understand the behavior of current. At
very low force strength, escape jumps between the neighbor-
ing wells are very rare, i.e., the average directed current is
very small.

The input energy is mostly expanded into the kinetic en-
ergy of the intrawell motion and eventually dissipates. As a
is increased further, the Brownian motor mechanism starts to
work and some part of the energy contributes to the net mo-
tion of the particle. Now due to inertia, the mean velocity
increases and reaches a maximum. Then a reaches a second
threshold value above which the current starts to decrease
because of the debilitating effect of the ratchet potential. The
occurrence of multiple reversals of the directed current, as is
shown in Figs. 5 and 6 for low force strength, is an interest-
ing feature of the inertial Brownian motor system [27-32].
The phenomenon of current reversals can be described by
different stability properties of the perturbed rotating orbits
of the system [30]. Current reversals are also associated with
bifurcations from chaotic to periodic orbits, in some cases, as
discussed by Mateos [29].

By comparing Figs. 5 and 6, we can surmise that the
current is much more substantial for the space-dependent ex-
ternal force case. Extra terms in the effective potential aris-
ing from space dependence of the external force do help in
increasing the current.

V. SUMMARY AND CONCLUSIONS

In this section, we present an overview of the principal
results of this paper. We have addressed the problem of un-
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derdamped Brownian particles in a position-dependent peri-
odic driving force in the high-frequency regime. We have
then calculated the effective potential up to second order in
the expansion parameter ¢ and used these results to calculate
the effective diffusion coefficient and transport current. In
the high-frequency regime, the particle makes small but
rapid excursions around a smooth path along which the mo-
tion is relatively slow. A systematic perturbative treatment in
powers of the excursion amplitude shows that the first-order
correction in the effective potential exists only if the exter-
nally applied rapidly oscillating field is space-dependent.
This first-order correction term [Eq. (19)] is the average ki-
netic energy which contributes to the work done against
damping. The second-order correction to the effective poten-
tial shows that a nontrivial contribution arises even for
position-independent driving.

We have employed our derived results for the calculation
of the effective diffusion coefficient and transport current.
We obtained the effective diffusion coefficient by solving
both the original dynamics and effective dynamics. We noted
a giant enhancement of diffusion, and the results arising from
original and effective dynamics agree very well. This vali-
dates our method of calculation in the high-frequency re-
gime. The enhancement of diffusion is a result of the optimal
collective actions of spatially periodic gradients, time-
periodic modulation, and thermal noise. The enhancement is
much more pronounced for the space-dependent periodic ex-
ternal force, which can be understood in terms of the extra

PHYSICAL REVIEW E 73, 051108 (2006)

terms arising in the effective potential from the space-
dependence of external force. We have analyzed the transport
properties and the behavior of current for the Brownian mo-
tor mechanism and compared the currents for two cases:
space-dependent and space-independent external forces. The
current is larger for the space-dependent case.

Finally, we would like to emphasize once again the prac-
tical implications of this work. The parameters that enter the
effective potential can be used to separate different species of
Brownian particles by identifying the minima of the effective
potential. One can control the diffusion rates by varying pe-
riodic spatial gradients and the space-dependent external
field. In addition to myriad applications mentioned earlier,
systems described by Eq. (1) are realized for charged par-
ticles moving on thermal surfaces under periodic potentials
subjected to time-varying fields. Recent motivation to study
these systems has been inspired by the theoretical modeling
of the molecules called kinesin and myosin, which possess
the ability to move unidirectionally along structural filaments
of microtubulin and actin.
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